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Abstract
Quantile regression is a method of estimating fish weight at

length for alternate portions of a probability distribution, but it is
an approach that has not received much attention in fisheries liter-
ature. Quantile regression can provide estimates of any quantile of
weight at length without bias (including the 75th quantile, which
was often the focus of standard weight [Ws] equations), and this is
more advantageous than previously defined Ws equations derived
from linear or quadratic regression methods. The goal of this study
was to demonstrate the utility of quantile regression as a tool to
assess fish weight at length at various portions of the probability
distribution without bias using Walleye Sander vitreus as a case
study. Quantile regression models at the 75th quantile were devel-
oped for three randomly selected Walleye populations from Geor-
gia and South Dakota and compared with a large (N = 33,589)
reference population. Bootstrap resampling procedures indicated
that only one population from the state of Georgia had an inter-
cept and slope similar to the reference population. For the one
population that had similar intercept and slope to the reference
population, predictions of weight at various lengths still fell below
the 95% CIs for predicted weights of the reference population, sug-
gesting that slight differences in intercepts and slopes in allometric
relationships can result in predicted weights that still differ at some
lengths. Predicted weights of Walleye derived from the 10th, 25th,
50th, 75th, and 90th quantiles were used to demonstrate how indi-
viduals and populations may be compared at different management
targets. Overall, this study demonstrates the relative ease with
which quantile regression may be used to compare fish body condi-
tion between populations without bias.

Standard weight (Ws) equations and the concept of
relative weight (Wr) were developed so that fisheries
managers would have a “quick, inexpensive, and useful
way of obtaining and interpreting fishery data for manage-
ment purposes” (Wege and Anderson 1978). However,
many Ws equations exhibit length-related biases, which
not only hamper the evaluations of fish body condition
but also influence a manager’s ability to accurately assess

fish body condition at all lengths (Gerow et al. 2005; Ran-
ney et al. 2010, 2011). Additionally, there are a number of
statistical concerns relating to estimating Ws equations,
estimating the length-related biases associated with Ws

equations (e.g., Gerow 2011; Ranney et al. 2011), and
interpreting Wr (Brendan et al. 2003; Pope and Kruse
2007). Despite these concerns, the use of Wr as an evalua-
tion tool has expanded beyond the scope envisioned by
the originators (Cade et al. 2008; Ranney et al. 2011).
Standard weight equations and Wr have been used to test
whether body condition differs among or within fish popu-
lations, and parametric tests are frequently used to com-
pare Wr data (Murphy et al. 1990; Hyatt and Hubert
2001; Brendan et al. 2003). However, Cade et al. (2008)
suggested that other means of comparing fisheries popula-
tions can provide a higher level of statistical rigor and be
more relevant to the questions being asked. One tool to
better compare changes in weight–length relationships is
quantile regression (Cade and Noon 2003; Cade et al.
2008, 2011; Crane et al. 2015; Crane and Farrell 2017).

Quantile regression is a method to estimate different
quantiles of a response variable distribution (Koenker and
Bassett 1978; Cade and Noon 2003). In most regression
applications, the mean response variable is estimated as a
function of the predictor variable (Cade and Noon 2003).
For example, the linear weight-as-a-function-of-length
model, common in fisheries applications,

log10ðWÞ ¼ aþ b � log10ðTLÞ;

is an estimate of the mean response of log10-transformed
weight (W) as a function of log10-transformed TL. Quan-
tile regression estimates use individual quantiles of the
response variable (i.e., W) as a function of the predictor
variable (i.e., TL). Thus, for a given quantile s, QW(s|TL)
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is the sth quantile Q as a function of TL (Cade et al.
2008). Quantile regression allows for the estimation of all
quantiles of W as a function of TL from s = 0.01 to 0.99
(Cade et al. 2008).

Length-biased Ws equations may lead to low-biased
estimates of Wr at the upper length ranges for many spe-
cies. Indeed, Ranney et al. (2010, 2011) found that Ws

equations developed for Walleye Sander vitreus using
either the regression-line percentile (RLP) technique (Mur-
phy et al. 1990) or the empirical percentile (EmP) method
(Gerow et al. 2005) were biased low. Regressing weight as
a function of length and estimating the 75th quantile of
weight for this functional relationship can generate unbi-
ased predictions of Walleye weight at the 75th quantile of
weight (Cade et al. 2008). Using direct estimates from any
quantile of fish weight—from 0.01 to 0.99—would provide
a more statistically valid means of comparing fish popula-
tions or individual fish to a reference population (Cade
et al. 2008). However, little attention has been given to
this method in the fisheries literature to date.

The goal of this study was to demonstrate the utility of
quantile regression as a tool to assess fish weight at length
without bias using Walleye as a case study. Direct com-
parison of population-specific quantile regression lines—
based on well-established statistical theory—show how
managers can directly compare fish populations with each
other or to a reference population. Predicted weights of
Walleye derived from s = 0.10, 0.25, 0.50, 0.75, and 0.90
across 10-mm length-classes demonstrate how populations
may be compared at different management targets. Wal-
leye was considered an ideal candidate species for this
study based on previous analyses (see Ranney et al. 2010,
2011), availability of data from a large geographic area,
and their recreational and economic importance (Aiken
2011).

METHODS
To generate regression models, I used Walleye data

from Ranney et al. (2010, 2011), which were filtered
before analyses with the filtering methods described in
Ranney et al. (2010) because data quality can influence
parameter estimation, model fit, and predictive ability
(Belsley et al. 1980). I refer to these data and any quantile
regressions from this data set as the “reference” data set
and regressions, respectively. I solicited additional Walleye
weight and length data from state fisheries management
agencies in Georgia and South Dakota and randomly
selected three Walleye populations from each state. Sam-
ple size was not a consideration when populations were
randomly selected. I refer to these data and the quantile
regressions from these data sets as the “state” data sets
and regressions.

I used the linear quantile regression function rq() in the
quantile regression package “quantreg” (Koenker 2017) in
R version 3.3.3 (R Development Core Team 2017) to
regress log10W as a function of log10TL to estimate 75th
quantile intercepts (b0) and slopes (b1) from the reference
and state population data. I used s = 0.75 because this is
similar to the established value used in Ws equations
(though Ws is not a true estimate of weight at length at
s = 0.75) and could be considered an estimator of fish
with “above average” body weight. Previous quantile
regression analyses (i.e., Cade et al. 2008, 2011) have
shown that a single linear model can provide estimates for
separate population-level b0 and b1 values when a categor-
ical factor (i.e., reference and each state population identi-
fier) and its interaction with the continuous predictor
variable (i.e., log10TL) are included in the same model. I
used the model

Qlog10 W ðsj log10 TL; IjÞ ¼ b0jðsÞIj þ b1jðsÞIj log10 TL;

where b0j and b1j are the intercepts and slopes for each
reference and state population, and Ij is the population
identifier. I estimated the SE of b0j and b1j by resampling,
with replacement, 5,000 log10W–log10TL pairs 1,000 times.
I calculated 95% CIs around each b0j and b1j with the t
statistic = 1.960.

I used a reparametrized version of the linear model
described above to estimate which state populations had
b0 and b1 values different from those of the reference pop-
ulation. To do this, I set the reference population as the
base level then set the contrasts to be among the rest of
the categorical factors (population identifier and its inter-
action with the continuous predictor variable). That model
then becomes

Qlog10 W ðsj log10 TL; IjÞ ¼ log10 b0ðsÞ þ b1ðsÞ log10 TL
þ b0jðsÞIj þ b1jðsÞIj log10 TL;

where b0 and b1 are intercepts and slope for the reference
population, and b0j and b1j then become the proportionate
differences in intercept and slope, respectively, for each
state population Ij from the reference population. In a
manner similar to that for estimating the SE of the b0 and
b1 for each population-level model, I estimated the SE of
the differences in b0j and b1j from the reference population
b0 and b1 with resampling. I resampled 5,000 log10W–
log10TL pairs 1,000 times and calculated the 95% CIs
around the differences in b0 and b1 with the t statis-
tic = 1.960. Alpha for all statistical tests was set to 0.05.

I compared quantiles of weight at specific lengths from
each state population to the reference population by
regressing log10W as a function of log10TL with s = 0.05,
0.10, . . . up to 0.95 in increments of 0.05 for each state
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population. I then estimated the weight and 95% CIs of
weight for the midpoints of the length categories for
Walleye (midpoints: substock = 125 mm; stock–quality =
315 mm; quality–preferred = 445; preferred–memorable =
570 mm; memorable–trophy = 695 mm: Gabelhouse 1984).

To demonstrate how individual fish may be compared
at different management targets, I used the reference data
set to create linear quantile regressions of log10W as a
function of log10TL at s = 0.10, 0.25, 0.50, 0.75, and 0.90
and predicted total weight values of each s at 10-mm
length-classes from 155 to 745 mm. I pooled data from
102 populations (N = 33,597 Walleyes) and assigned equal
weights to all populations regardless of contributed sample
size (Cade et al. 2008). These values of s are appropriate
benchmarks of comparison for population weight data.
Estimating the 90th quantile of weight as a function of
length corresponds to a fish of “excellent” body weight;
the 75th quantile allows for a comparison of fish to the
reference population “above average” body weight; the
50th quantile allows for comparison of fish to a reference
population “average” body weight; the 25th quantile
allows for comparison of fish to a reference population
“below average” body weight; and the 10th quantile
allows for comparison of fish to a reference population
“poor” body weight. I exponentiated the predicted values
of log10W to convert W back to body weight in grams
[e.g., 10ðlog10W Þ].

A repository that includes supplementary data and R
code used in this manuscript is available at https://github.c
om/stevenranney/waeQuantiles.

RESULTS
The filtered reference data set included 102 Walleye

populations and 33,597 individual observations of weight
and length. The three randomly sampled populations
from each state contained N = 313, 795, and 199 individ-
uals for the GA1, GA2, and GA3 populations, respec-
tively, from Georgia and N = 392, 280, and 140 for the

SD1, SD2, and SD3 populations, respectively, from South
Dakota. Individuals from populations in Georgia were
collected with fall gillnetting and late-winter electrofishing.
Individuals from South Dakota populations were col-
lected with summer gill nets. The method used in the col-
lection of individuals in the reference data set was
unknown.

The 75th quantile regression model b0 and b1 estimates
for the reference data set were �5.702 and 3.277, respec-
tively (Table 1). The 95% CI for the reference data set
was b0 = �5.717 to �5.687 and b1 = 3.271 to 3.282. The
lowest b0 was in the GA1 population (�5.713) and the
largest was in the SD2 population (�5.174; Table 1).
The lowest b1 value in the state population data was in
the SD2 population (3.070) and the largest in the GA1
population (3.275; Table 1).

Bootstrapped 95% CIs of 75th quantile b0 and b1
values for the reference data set overlapped the 75th
quantile estimates of slope and intercept for only one of
three Georgia populations and none of the South
Dakota populations (Table 2). Estimates and 95% CIs
of weight at TL equal to the midpoints of length cate-
gories across all quantiles ranging from s = 0.05 up to
0.95 by increments of 0.05 overlapped considerably for
all three populations from Georgia and the reference
population, especially at TL = 125 mm (Figure 1A).
Overlap in the CIs for all Georgia populations and the
reference population was evident across the remaining
four weight-at-total-length estimates, though it became
less pronounced at the upper length ranges for GA2.
There was less overlap in the CI bands for the South
Dakota populations at lower lengths (TL = 125, 315,
and 445 mm) than at higher lengths (TL = 570 and
695 mm; Figure 1B). Estimates of Walleye weight at
s = 0.10, 0.25, 0.50, 0.75, and 0.90 from the reference
population for each 10-mm length class ranged from
23.6, 25.3, 27.3, 29.8, and 32.1 g at the 155-mm length
class to 4,107.1, 4,385.1, 4,730.0, 5,114.9, and 5,532.0 g
at the 745-mm length class (Table 3).

TABLE 1. Estimates of intercept and slope values from bootstrapped replicates of quantile regression with s = 0.75 for seven different data sets of
Walleye. Bootstrap replicates were estimated by resampling with replacement 5,000 log10W and log10TL pairs 1,000 times.

Population

Intercept (b0) Slope (b1)

2.5% Estimate 97.5% 2.5% Estimate 97.5%

Reference �5.717 �5.702 �5.687 3.271 3.277 3.282
GA1 �5.954 �5.713 �5.471 3.186 3.275 3.364
GA2 �5.551 �5.451 �5.352 3.135 3.173 3.212
GA3 �5.678 �5.508 �5.339 3.135 3.201 3.266
SD1 �5.497 �5.425 �5.353 3.140 3.169 3.197
SD2 �5.356 �5.174 �4.992 3.000 3.070 3.139
SD3 �5.692 �5.603 �5.514 3.186 3.223 3.259
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DISCUSSION
Quantile regression of fisheries weight–length data is a

means to compare individual fish weights and population
regression data without the biases and statistical limita-
tions inherent in Ws equations and Wr values (Cade et al.
2008). Quantile regression of a reference data set(s) pro-
vides fisheries scientists and managers a means by which
conspecific fish populations and individuals can be com-
pared with statistical rigor (Cade et al. 2008; Ranney
et al. 2011). Fisheries scientists and managers may con-
sider that Wr and Ws still have a use in fisheries science;
however, the biases inherent in Ws equations (see Ranney
et al. 2010, 2011 for a detailed discussion) do not provide
the statistical validity with which to compare individuals
and populations. Even when comparing the results of local
management actions (e.g., prey augmentation: Cade et al.
2008), quantile regression was demonstrated as superior to
Wr and there was no need to have a Ws equation from a
large reference population. Those working with weight–
length data should carefully consider whether Wr is rele-
vant to the questions they are asking. Linear quantile
regression provides the capability to compare unbiased
estimates of quantiles and is rooted in standard linear
model procedures rather than the ad hoc methods in use
today to compare Wr values.

Estimates of weight at length from quantile regression
can be used in place of Wr in nearly all instances in which
Wr is subject to statistical analysis. Linear quantile regres-
sion is a more statistically rigorous tool that can be used
to compare changes in weight–length relationships before
and after specific treatments or management actions, or to
compare the weight–length relationships of multiple popu-
lations (e.g., Cade et al. 2008, 2011; Crane et al. 2015;
Crane and Farrell 2017). Populations that are monitored
on a yearly basis (e.g., trophy fisheries or threatened and
endangered populations) are also well suited to quantile
regression analysis.

Slight differences in b0 and b1 in allometric relation-
ships can result in large differences in predictions of

weight at various lengths. For example, though GA1 and
the reference population had similar b0 and b1 values
(Table 1), the predictions of weight at the 75th quantile
for the GA1 population at higher lengths (Figure 1A) fell
outside the 95% CIs for the reference data set. Similarly,
differences in b0 and b1 in allometric relationships do not
imply that predicted weights will be different across length
ranges. At TL = 315 mm (Figure 1B), the SD1 and SD2
populations had almost identical predictions of weight at
the 75th quantile compared with that from the reference
population. This suggests that the joint effect of b0 and b1
is what matters most and that it is still difficult to make
conclusive statements about how predictions (and popula-
tions) differ until actual predictions of weight have been
compared with each other. I could have achieved better
precision in the CIs around the predictions of weight at
length at various quantiles for both the state and reference
populations had I resampled more than 5,000 weight–
length pairs and bootstrapped the regressions more than
1,000 times. However, resampling pairs to the size of the
entire data set (N = 35,716) and running 10,000 bootstrap
regressions would have required significant additional
computing time.

With unbiased estimates of any quantile of weight for
10-mm length categories, a fisheries manager (or angler)
can compare the length and weight of an individual fish to
the reference values in Table 3 to determine how that indi-
vidual compares with the reference population. For exam-
ple, if a 580-mm Walleye weighs 2,100 g, the fisheries
manager can compare those values to the 585-mm length
class in Table 3. Thus, a fish that weighs 2,100 g and is
580 mm long is somewhere between the 25th and 50th
quantile estimate of weight for the reference population. If
interested, a fisheries manager could determine at which s
a 580-mm fish weighing 2,100 g lies. Further, any addi-
tional quantile weights between s = 0.01 and 0.99 and
their CIs may be readily calculated and included in tabu-
lar form as a quick reference for fish body weight to iden-
tify potential areas for growth bottlenecks. For example, a

TABLE 2. Differences and 95% CIs around the differences in intercepts and slope of each state population from the reference population. The
P-value is from a test of the null hypothesis that the intercept and slope from the quantile regression, where s = 0.75 for each state population, is
equal to the reference population intercept and slope. An asterisk (*) indicates populations with significantly different intercept and slope from the
reference population.

Population

Intercept (b0) Slope (b1)

2.5% Estimate 97.5% P-value 2.5% Estimate 97.5% P-value

GA1 �0.2484 �0.0107 0.2271 0.9299 �0.0898 �0.0019 0.0861 0.9668
GA2* 0.1486 0.2507 0.3528 <0.0001 �0.1423 �0.1032 �0.064 <0.0001
GA3* 0.0062 0.194 0.3819 0.0429 �0.1483 �0.0757 �0.0032 0.0407
SD1* 0.2024 0.2772 0.352 <0.0001 �0.1375 �0.108 �0.0784 <0.0001
SD2* 0.3549 0.5281 0.7014 <0.0001 �0.273 �0.207 �0.141 <0.0001
SD3* 0.0129 0.0991 0.1853 0.0242 �0.089 �0.054 �0.019 0.0025
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FIGURE 1. Quantile regression (s = 0.05 up to 0.95 by increments of 0.05) predictions and 95% CIs of weight for the midpoint of each length
category (substock, stock–quality, quality–preferred, preferred–memorable, memorable–trophy: Gabelhouse 1984) for the reference data set and (A)
three populations of Walleye from Georgia and (B) three from South Dakota. Confidence bands around the reference population are narrow and
appear as a solid line.
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fisheries manager responsible for the SD1 and SD2 pop-
ulations can determine that the 75th quantile of fish at
the stock–quality midpoint (TL = 315 mm in Figure 1B)
are tracking well with the reference data set. However,
at the memorable–trophy midpoint (TL = 695 mm in
Figure 1B), Walleyes from those same populations fall
well below the species-wide standards at all estimated
quantiles except s = 0.15 and below. This could be an
indication that prey availability at length categories
beyond the quality–preferred category may be limiting
Walleye growth. Similarly, the manager responsible for
all Georgia populations can see that the populations of
Walleye at the quality–preferred category midpoint
(TL = 445 mm in Figure 1A) are all tracking well with
the species-wide reference populations. Values in Table 3
could easily be converted to imperial measurements if
so desired.

Though I have refrained from referring to quantile
regression predictions of weight as estimates of “condi-
tion,” I did select the quantiles shown in Table 3 for a
reason. Historically, Ws equations have been estimated
at the 75th percentile (Wege and Anderson 1978) and if
the ratio of individual fish weight to Ws 9 100 was
greater than 100, then that individual is assumed to be
in good or “above average” condition (Wege and Ander-
son 1978; Neumann et al. 2012). Here, because quantile
regression is estimating the response of log10-transformed
fish weight as a function of log10-transformed TL at the
quantile specified, we can use phrases like “excellent,”
“above average,” “average,” “below average,” and
“poor” weight for s = 0.90, 0.75, 0.50, 0.25, and 0.10,
respectively, because that is one interpretation of what

TABLE 3. Weight (g) estimates of Walleye at 10-mm length classes
from 155 to 745 mm for s = 0.10, 0.25, 0.50, 0.75, and 0.90 of the refer-
ence data set. Estimates of weight were derived from linear quantile
regressions of log10W as a function of log10TL.

TL (mm)

Quantile (s)

0.10 0.25 0.50 0.75 0.90

155 23.6 25.3 27.3 29.8 32.1
165 28.9 31.0 33.6 36.6 39.5
175 35.1 37.7 40.7 44.4 47.8
185 42.1 45.2 48.9 53.3 57.4
195 50.1 53.7 58.1 63.3 68.2
205 59.0 63.3 68.5 74.6 80.4
215 69.1 74.0 80.1 87.2 94.0
225 80.2 86.0 92.9 101.2 109.1
235 92.5 99.1 107.2 116.7 125.8
245 106.1 113.7 122.9 133.7 144.2
255 121.0 129.7 140.2 152.5 164.4
265 137.3 147.1 159.0 172.9 186.6
275 155.1 166.1 179.6 195.3 210.6
285 174.4 186.8 201.9 219.5 236.8
295 195.4 209.2 226.1 245.8 265.2
305 218.0 233.4 252.2 274.1 295.8
315 242.4 259.5 280.4 304.7 328.8
325 268.6 287.6 310.7 337.6 364.3
335 296.8 317.7 343.2 372.8 402.4
345 326.9 349.9 378.0 410.5 443.1
355 359.1 384.3 415.2 450.8 486.6
365 393.4 421.0 454.8 493.8 533.1
375 430.0 460.1 497.0 539.5 582.5
385 468.8 501.7 541.8 588.1 635.0
395 510.1 545.7 589.4 639.6 690.7
405 553.8 592.4 639.8 694.2 749.7
415 600.0 641.8 693.1 752.0 812.1
425 648.9 694.0 749.5 813.0 878.0
435 700.4 749.1 808.9 877.4 947.6
445 754.7 807.2 871.6 945.2 1,021.0
455 812.0 868.3 937.5 1,016.6 1,098.1
465 872.1 932.6 1,006.9 1,091.7 1,179.3
475 935.3 1,000.1 1,079.7 1,170.5 1,264.5
485 1,001.6 1,070.9 1,156.1 1,253.2 1,353.9
495 1,071.1 1,145.1 1,236.2 1,339.9 1,447.6
505 1,143.9 1,222.9 1,320.1 1,430.6 1,545.7
515 1,220.1 1,304.2 1,407.8 1,525.6 1,648.4
525 1,299.7 1,389.3 1,499.6 1,624.8 1,755.7
535 1,382.9 1,478.1 1,595.4 1,728.4 1,867.8
545 1,469.7 1,570.8 1,695.4 1,836.5 1,984.7
555 1,560.2 1,667.4 1,799.6 1,949.3 2,106.6
565 1,654.5 1,768.2 1,908.2 2,066.7 2,233.7
575 1,752.8 1,873.0 2,021.4 2,189.0 2,366.0
585 1,855.0 1,982.1 2,139.1 2,316.3 2,503.6
595 1,961.3 2,095.6 2,261.4 2,448.5 2,646.7

TABLE 3. Continued.

TL (mm)

Quantile (s)

0.10 0.25 0.50 0.75 0.90

605 2,071.8 2,213.5 2,388.6 2,586.0 2,795.4
615 2,186.5 2,336.0 2,520.6 2,728.7 2,949.8
625 2,305.6 2,463.1 2,657.7 2,876.8 3,110.0
635 2,429.1 2,594.9 2,799.8 3,030.3 3,276.1
645 2,557.1 2,731.5 2,947.1 3,189.5 3,448.4
655 2,689.8 2,873.1 3,099.8 3,354.4 3,626.8
665 2,827.1 3,019.7 3,257.8 3,525.2 3,811.6
675 2,969.3 3,171.4 3,421.4 3,701.9 4,002.8
685 3,116.4 3,328.3 3,590.6 3,884.6 4,200.5
695 3,268.5 3,490.5 3,765.5 4,073.5 4,405.0
705 3,425.7 3,658.2 3,946.3 4,268.8 4,616.3
715 3,588.0 3,831.4 4,133.0 4,470.4 4,834.5
725 3,755.6 4,010.2 4,325.8 4,678.5 5,059.8
735 3,928.6 4,194.8 4,524.7 4,893.3 5,292.2
745 4,107.1 4,385.1 4,730.0 5,114.9 5,532.0
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respectively, because that is one interpretation of what
those quantiles represent. Other quantiles and more
refined definitions could be established to identify bench-
marks for comparison in other species or for different
management priorities. Lower values of s for nongame
fishes or threatened or endangered species may be a
more appropriate benchmark for comparison. State and
regional fisheries scientists and managers can determine
which quantile or set of quantiles best fits the question
they are asking or the species they are investigating. The
ease with which quantile models can be estimated and
compared makes the need to set a “standard” quantile
(or set of quantiles) superfluous.

I have used a reference data set that spans a large
portion of the geographic range of Walleye. Given that
this paper is meant as an introduction to using quantile
regression to estimate fish body weight at length, this
seemed like a reasonable first step. This is not meant to
suggest, however, that fisheries scientists and managers
should always use such a robust data set to which they
can compare their own fish populations. Indeed, though
fisheries managers in Georgia may want to compare
their populations to those of the upper U.S. Midwest
periodically, it seems more likely that managers in one
region would be most interested in making within-region
comparisons. As a result, regional reference data sets
could be established and used as reference populations,
depending upon the comparison of interest. Fisheries sci-
entists and managers could easily define a useful organi-
zation of geography and habitat (e.g., reservoirs, lakes,
rivers) so that consistency within a region is maintained.
Deciding which regions and which habitats should be
grouped together is challenging; however, the well-devel-
oped statistical method by which those comparisons can
be made should allow fisheries scientists and managers
to spend more time considering the question of organi-
zation rather than considering how to conduct that
analysis.

The minimum sample size needed for a reference data set
has not been investigated. However, given that CI estimates
are made with the t statistic (Zar 1999), if sample sizes are
low, then CIs of any range will be less precise. The mini-
mum number of populations that should be included in a
reference data set has also not been investigated. Provided
that the reference data set contains enough populations to
be representative of the species across the spatial extent of
the comparison(s) being made, the number of populations
in the reference data set is likely of little concern because all
populations are given equal weights, regardless of con-
tributed sample size (Cade et al. 2008). If there is a relevant
weighting scheme based on survey design, weights can be
incorporated into the linear quantile regression model by
implementing appropriate weighting arguments. Averaging
quantile estimates across multiple populations—based on

constructing appropriate contrasts in the linear model—is
an alternative approach to having a single “reference” pop-
ulation (Cade et al. 2011).

Many state and provincial management agencies
already have standard methods in place to collect fisheries
weight–length data, and therefore alternative methods are
unnecessary for “standardized” collections. For manage-
ment agencies that do not have a standard method by
which to collect fisheries length–weight data for a given
species, I recommend establishing protocols as soon as is
reasonable (see Bonar et al. [2009] for guidelines). Recog-
nizing that time of year may affect the weight of an indi-
vidual fish (e.g., prespawn versus postspawn), state
reference data sets that are compiled from a standardized
collection method would be consistent. For larger, regio-
nal reference data sets, the variability inherent across
standardized collection methods from contributing man-
agement agencies (e.g., prespawn versus late summer ver-
sus under ice) would likely negate any biases that could be
inherent in the data (e.g., heavier fish collected during the
prespawn season, lighter fish collected in midwinter).
Additionally, resampling a data set considered to be repre-
sentative of the species across the spatial extent under con-
sideration when estimating the b0 and b1 coefficients of
the quantile regression models would serve to reduce the
influence of the collection method on estimates of b0, b1,
or the differences between the b0 and b1 of the reference
population and any other populations being compared.

Frequency of reference data set compilation should be
determined by fisheries scientists and managers. Climate
change may impact different geographic regions at differ-
ent rates. As a result, defining the frequency with which
reference data sets should be established is beyond the
scope of this paper. Climate change could affect growth of
fishes across geographic regions and latitudes, and refer-
ence data sets should reflect those changes. Regardless of
how climate change affects fish growth, the ease with
which population comparisons can be made with quantile
regression will allow fisheries scientists and managers more
time to think about their research questions and manage-
ment goals rather than the best way to conduct analyses
of their data.

Quantile regressions of fisheries log10-transformed
weight–length data provide a statistically valid means of
comparing any quantile estimates of weight. While I do
not advocate eliminating Ws and Wr as a means of evalu-
ating fish condition in situations appropriate to manage-
ment, quantile regression provides a simple, tractable, and
statistically valid means of directly evaluating fisheries
weight at length for alternate portions of a probability dis-
tribution (Cade and Noon 2003). Quantile regression pro-
cedures are available in common data analysis software:
XLStat for Excel, PROC QUANTREG in SAS, and the
“statsmodels” library in Python. It is my hope that
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quantile regression will become a common means of eval-
uating various distributions of fish weight at length and
will help fisheries scientists and managers compare weight
at length of disparate populations without the length
biases of Ws and the ad hoc methods used to analyze Wr

data.

ACKNOWLEDGMENTS
I thank the contributors of the state population data

sets used in these analyses: Bill Couch, Anthony Rabern,
and Dennis Schmitt of the Georgia Department of Natu-
ral Resources, Wildlife Resources Division, and Brian
Blackwell of the South Dakota Department of Game,
Fish, and Parks. I also thank Melissa Wuellner from the
Department of Natural Resource Management, South
Dakota State University, and Mandy Kauffman from
Western Ecosystems Technologies, Inc., in Laramie,
Wyoming, both of whom provided necessary and useful
reviews of this manuscript early in its development. I also
thank Brian Cade of the U.S. Geological Survey for pro-
viding particularly helpful reviews that included substan-
tial technical support regarding quantile regression and
two additional anonymous reviewers that provided
thoughtful guidance on this manuscript. There is no
conflict of interest declared in this article.

REFERENCES
Aiken, R. 2011. Net economic values for wildlife-related recreation in

2011: addendum to the 2011 national survey of fishing, hunting, and
wildlife-associated recreation. U.S. Fish and Wildlife Service Report
2011-8.

Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression diagnostics:
identifying influential data and sources of collinearity. Wiley, New
York.

Bonar, S. A., W. A. Huber, and D. W. Willis, editors. 2009. Standard
methods for sampling North American freshwater fishes. American
Fisheries Society, Bethesda, Maryland.

Brendan, T. O., B. R. Murphy, and J. B. Birch. 2003. Statistical proper-
ties of the relative weight (Wr) index and an alternative procedure for
testing Wr differences between groups. North American Journal of
Fisheries Management 23:1136–1151.

Cade, B. S., and B. R. Noon. 2003. A gentle introduction to quantile
regression for ecologists. Frontiers in Ecology and the Environment
1:412–420.

Cade, B. S., J. W. Terrell, and B. C. Neely. 2011. Estimating geographic
variation in allometric growth and body condition of Blue Suckers
with quantile regression. Transactions of the American Fisheries Soci-
ety 140:1657–1669.

Cade, B. S., J. W. Terrell, and M. T. Porath. 2008. Estimating fish body
condition with quantile regression. North American Journal of Fish-
eries Management 28:349–359.

Crane, D. P., and J. M. Farrell. 2017. Trends in body condition of
Smallmouth Bass and Northern Pike (1982–2013) following multiple
ecological perturbations in the St. Lawrence River. Canadian Journal
of Fisheries and Aquatic Sciences 74:1158–1172.

Crane, D. P., J. M. Farrell, D. W. Einhouse, J. R. Lantry, and J. L.
Markham. 2015. Trends in body condition of native piscivores follow-
ing invasion of Lakes Erie and Ontario by the Round Goby. Fresh-
water Biology 60:111–124.

Gabelhouse, D. W. Jr. 1984. A length-categorization system to assess fish
stocks. North American Journal of Fisheries Management 4:273–285.

Gerow, K. G. 2011. Comment: assessing length-related biases in standard
weight equations. North American Journal of Fisheries Management
31:656–660.

Gerow, K. G., R. C. Anderson-Sprecher, and W. A. Hubert. 2005. A
new method to compute standard-weight equations that reduces
length-related bias. North American Journal of Fisheries Manage-
ment 25:1288–1300.

Hyatt, M. W., and W. A. Hubert. 2001. Statistical properties of relative
weight distributions of four salmonid species and their sampling
implications. North American Journal of Fisheries Management
21:666–670.

Koenker, R. 2017. quantreg: Quantile regression. R package version 5.34.
Available: http://cran.r-project.org/package=quantreg. (April 2018).

Koenker, R., and G. Bassett. 1978. Regression quantiles. Econometrica
46:33–50.

Murphy, B. R., M. L. Brown, and T. A. Springer. 1990. Evaluation of
the relative weight (Wr) index, with new applications to Walleye.
North American Journal of Fisheries Management 10:85–97.

Neumann, R. M., C. S. Guy, and D. W. Willis. 2012. Length, weight,
and associated indices. Pages 637–676 in A. V. Zale, D. L. Parrish,
and T. M. Sutton, editors. Fisheries techniques, 3rd edition. American
Fisheries Society, Bethesda, Maryland.

Pope, K. L., and C. G. Kruse. 2007. Condition. Pages 423–471 in C. S.
Guy and M. L. Brown, editors. Analysis and interpretation of fresh-
water fisheries data. American Fisheries Society, Bethesda, Maryland.

R Core Team. 2017. R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna. Available:
http://www.r-project.org/. (April 2018).

Ranney, S. H., M. J. Fincel, M. R. Wuellner, J. A. VanDeHey, and M.
L. Brown. 2010. Assessing length-related bias and the need for data
standardization in the development of standard weight equations.
North American Journal of Fisheries Management 30:655–664.

Ranney, S. H., M. J. Fincel, M. R. Wuellner, J. A. VanDeHey, and M.
L. Brown. 2011. Assessing length-related biases in standard weight
equations: response to comment. North American Journal of Fish-
eries Management 31:661–665.

Wege, G. J., and R. O. Anderson. 1978. Relative weight (Wr): a new
index of condition for Largemouth Bass. Pages 79–91 in G. D.
Novinger and J. G. Dillard, editors. New approaches to the manage-
ment of small impoundments. American Fisheries Society, Special
Publication 5, Bethesda, Maryland.

Zar, J. H. 1999. Biostatistical analysis, 4th edition. Prentice Hall, Upper
Saddle River, New Jersey.

8 RANNEY

http://cran.r-project.org/package=quantreg
http://www.r-project.org/

